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Abstract
The Kochen–Specker theorem states that a 3-dimensional complex Euclidean
space admits a finite configuration of projective lines such that the
corresponding quantum observables (the orthogonal projectors) cannot be
assigned with 0 and 1 values in a classically consistent way. This paper shows
that the irreducible root systems of exceptional and of non-crystallographic
types are useful in constructing such configurations in other dimensions.
The cases E6 and E7 lead to new examples, while F4, E8 and H4 yield a
new interpretation of the known ones. The described configurations have an
additional property: they are saturated, i.e. the tuples of mutually orthogonal
lines, being partially ordered by inclusion, yield a poset with all maximal
elements having the same cardinality (the dimension of space).

PACS numbers: 03.65.Ta, 03.65.Ud, 03.65.Fd

1. Introduction

The aim of the present paper is to establish a link between several examples illustrating the
Kochen–Specker theorem [1] (a result in non-relativistic quantum theory closely related to
Bell’s inequalities) and the irreducible root systems (a notion emerging in the classification of
finite-dimensional complex simple Lie algebras and of finite Coxeter groups).

Let us recall what the Kochen–Specker result is about. The main object is a finite collection
A ⊂ P(H) of (projective) lines in a complex or real Hilbert space H of finite dimension d.
One is interested in the orthogonality relation ⊥ between the elements of A, and the aim is to
assign to each x ∈ A one of two colours, say red or blue, satisfying certain conditions. Every
such (bi)colouring is described by a function v : A → {0, 1}, where 0 corresponds, say, to the
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blue colour and 1 corresponds to the red colour. Let us say that a bicolouring v : A → {0, 1} is
good if (1) for all collections of mutually orthogonal x1, x2, . . . , xd ∈ A there exists a unique
i0 such that v(xi0) = 1; (2) ∀ x, y ∈ A: if y ⊥ x and v(x) = 1, then y = 0. S Kochen and
E P Specker prove that if d = 3 and H is complex, then there exists A which does not admit a
good v (note that their construction is explicit and yields |A| = 117).

Let us call A non-colourable if it does not admit good bicolourings, and colourable—
otherwise (leaving out the prefix bi). The motivation to look for such configurations comes
from the analysis of quantum theory in terms of Bell’s inequalities meant to express the
deviation of the behaviour of a physical system from a classical pattern. If each x ∈ A

is identified with a 0–1 observable (represented by the orthogonal projector on x), then the
behaviour of the physical system with respect to the measurement acts of these observables will
be extremely non-classical in the following sense. Take any A with the property mentioned.
In classical physics an act of measurement of an observable is an act of revealing of its pre-
existing value. Try to accept the same point of view in the quantum case, in particular, for the
observables A. Suppose we have a collection of mutually orthogonal x1, x2, . . . xk ∈ A. Since
the corresponding projectors commute, their observables can be measured simultaneously. If
a simultaneous measurement act yields 1 for xi0 , it yields 0 for the other xi, i �= i0. If k = d,
then xi0 corresponding to 1 is always present. Therefore we can induce a good bicolouring
v on A with v(x) being the pre-existing value corresponding to x ∈ A. Since A does not
admit such bicolourings, one may not interpret the acts of measurements with respect to A in
a straightforward classical fashion.

The non-colourable configurations A are known to exist in every dimension d � 3.
For d � 2 all projective configurations admit good (bi)colourings. It turns out that some
of the examples have nice geometrical properties. If we look at the whole collection
P(H), dimH = d, then we have the following: whenever x1, x2, . . . , xk ∈ P(H), k < d,
are mutually orthogonal, there exist xk+1, xk+2, . . . , xd , such that x1, x2, . . . , xd are mutually
orthogonal. Let us require this property from a configuration A ⊂ P(H). Denote

P(k)
⊥ (A) := {U ⊂ A|#U = k&∀x, y ∈ U : x �= y ⇒ x ⊥ y}.

Put P⊥(A) := ∪d
k=0P

(k)
⊥ (A). A is called saturated if ∀U ∈ P⊥(A)∃M ∈ P(d)

⊥ (A) such that
M ⊃ U . An easy example of a finite saturated configuration A in d dimensions is just a
collection of d mutually orthogonal lines, but there exist much more complicated examples.
Furthermore, there exist finite saturated configurations which do not admit good bicolourings!
From a quantum-mechanical perspective, one may view such configurations as finite analogues
of P(H).

Intuitively, a finite saturated projective configuration without good bicolourings is
something very symmetric. This symmetry is essentially the subject of the present paper. It
turns out that exceptional root systems and non-crystallographic root systems of finite Coxeter
groups allow us to construct examples of such configurations. The idea is to consider the
projective lines represented by the roots. There exist the following exceptional root systems:
G2, F4, E6, E7 and E8. The non-crystallographic root systems are denoted by I2(p) (p = 5
or p > 6), H3 and H4. Since a configuration is non-colourable only if d � 3, focus on the
root systems F4, E6, E7, E8,H3 and H4. The result is as follows.

Theorem 1.

(1) The finite projective configurations F4, E7, E8 and H4 are saturated and non-colourable.
(2) The configuration H3 is saturated, but colourable.
(3) The configuration E6 admits an extension up to a saturated finite configuration, which is

non-colourable.
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The explicit description of the mentioned saturation of E6 configuration will be given
below (theorem 2). It is interesting to mention that it is realized by a presheaf-like construction
that makes use of the remaining exceptional root system G2.

2. The root systems F4, E8, H4 and H3

The F4, E8 and H4 configurations correspond to the Kochen–Specker-type examples already
considered in the literature. Therefore we make just a few remarks. The saturation property
can be verified on a personal computer in a straightforward manner (for example, in Maple).

The projective configurations in R
4 illustrating the Kochen–Specker theorem given by A

Peres [2] (20 lines) and A Cabello, J M Esterbaranz, G Garcı́a-Alcaine [3] (18 lines) can be
viewed as subsets of the same set of 24 lines represented by the elements of the F4 root system.

The root system E8 is related to the Kochen–Specker-type example constructed by
D Mermin [4] and by M Kernaghan, A Peres [5]. Their example involves 40 projective
lines in R

8. The finite saturated configuration containing these lines has been constructed by
A Ruuge, F Van Oystaeyen [6]. It consists of 120 projective lines. These lines can be viewed
as projective lines corresponding to the 240 roots of the irreducible root system E8.

The H4 case corresponds to the paper of P K Aravind, F Lee-Elkin [7]. There are
120 roots, which yield 60 projective lines in R

4.
The H3 case is rather simple and does not yield a new example of a finite non-colourable

configuration (in R
3). The root system contains the vectors (±1, 0, 0), (±1,±1/τ,±τ), plus

all the vectors obtained from them by cyclic permutations of coordinates; here τ = (1+
√

5)/2
is the golden ratio (recall that τ 2 = τ+1). There are 30 roots in total, and therefore 15 projective
lines. The corresponding configuration uniquely splits into five mutually disjoint triples of
mutually orthogonal lines. It is saturated and colourable, admitting 35 good bicolourings.

3. The root system E7

The case of the root system of the Coxeter group of type E7 requires a little bit more work.
It is necessary to make some remarks to persuade oneself in the fact that the corresponding
(saturated) configuration (in R

7) is not colourable.
It is convenient to model the E7 root system (denote it by �) not on R

7, but
on a 7-dimensional subspace of R

8 consisting of all vectors (a1, a2, . . . , a8) such that∑8
i=1 ai = 0. One can obtain � by taking the union of the orbits of (1, 1̄, 0, 0, 0, 0, 0, 0)

and (1/2)(1, 1, 1, 1, 1̄, 1̄, 1̄, 1̄) under the natural action of S8 on R
8; here 1̄ = −1. The result

is |�| = 126 and therefore we have 63 projective lines (rays). Let [a1, a2, . . . , a8] denote the
ray represented by the vector (a1, a2, . . . , a8).

For each k = 2, 3, . . . , 7, one may consider all k-tuples of mutually orthogonal rays;
denote the number of all such k-tuples by nk . Then a (straightforward) Maple computation
yields n2 = 945, n3 = 4095, n4 = 4725, n5 = 2835, n6 = 945, n7 = 135. It turns out that
our configuration (63 rays) can be represented as a union of nine mutually disjoint 7-tuples of
mutually orthogonal rays (63 = 9 × 7). In fact, there are 960 possibilities of realizing such a
disjoint union, but we are going to select just one of them. To describe it, it is convenient to
index the components of a ∈ R

8 not by 1, 2, . . . , 8, but by the elements of the projective line
F7 ∪ {∞} over the field of seven elements, a = (a∞, a0, a1, . . . , a6).

Let k vary over F7. Denote by λ(k) the ray represented by the vector (a∞, a0, . . . , a6)

having a∞ = 1, ak = −1, and all other components equal to 0. Denote by µ(k) the ray
represented by the vector having 1 at the positions ∞, k, k + 1, k + 3, and −1 at the other
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four positions. Denote by ν(k) the ray represented by the vector having 1 at the positions
∞, k, k−1, k−3 and −1 at the other four positions. Next, let i ∈ F7 vary over 1, 2, 3. Denote
by ξ (k,i) the ray represented by the vector (a∞, a0, . . . , a6) having ak+i = 1, ak−i = −1, and
all other components equal to 0. Finally, denote by η(k,i) the ray represented by the vector
having 1 at the positions ∞, k, k + i, k − i and −1 at the other four positions.

With this notation we can describe the following 7-tuples of mutually orthogonal rays. Put
Qk := {λ(k), ξ (k,1), ξ (k,2), ξ (k,3), η(k,1), η(k,2), η(k,3)}, k ∈ F7. Put Q+ := {µ(0), µ(1), . . . , µ(6)}
and Q− := {ν(0), ν(1), . . . , ν(6)}. It is straightforward to check that Q0, . . . ,Q6,Q+,Q− are
mutually disjoint; their union is just the E7 configuration. Let us also write Q7 instead of Q+,
and Q8 instead of Q−.

The verification that the configuration is non-colourable can now be completed on a
computer. If it were colourable, one could choose in each Qi an element li , in such
a way that the rays l1, l2, . . . , l9 were pairwise non-orthogonal. To verify that this is
impossible, take any x1 ∈ Q1. Find x2 ∈ Q2 such that x2 �⊥ x1. After that, find
x3 ∈ Q3 such that x3 �⊥ x1 and x3 �⊥ x2. If this is possible, try to find x4 ∈ Q4 such
that x4 �⊥ x1, x2, x3, and so on. It turns out that one cannot reach this way the set Q9.
Therefore the E7 configuration is non-colourable. Introducing (in analogy with nk) the
numbers mq for the numbers of all q-tuples of mutually non-orthogonal rays, one obtains
m2 = 1008,m3 = 5376,m4 = 10080,m5 = 8064,m6 = 2016,m7 = 288,m8 = 0. An
example of seven mutually non-orthogonal rays is λ(0), λ(1), . . . , λ(6).

4. The root system E6

This case is much more complicated than the other cases. The corresponding configuration
does not contain tuples of pairwise orthogonal rays which have five or six elements. In
particular, it is not saturated. It turns out that it is possible to construct a non-colourable
saturated configuration containing it. Moreover, the construction makes use of the remaining
G2 root system, i.e. in the end all exceptional root systems turn out to be useful in constructing
the examples of non-colourable saturated configurations. Generally speaking, what happens is
that one computes all the 4-tuples of pairwise orthogonal lines in E6, and then attaches to each
such tuple a copy of G2 projective configuration. This presheaf-like construction turns out
to be saturated. Some more lines are needed to achieve non-colourability, but the saturation
property can be preserved.

Let us describe the roots of E6. It is convenient to model them on a 6-dimensional
subspace R of R

9. A generic element of R
9 is of the form (x1, x2, x3; y1, y2, y3; z1, z2, z3). It

is convenient to use a shorter notation for it: (x; y; z), where x = (x1, x2, x3), y = (y1, y2, y3),
and z = (z1, z2, z3). The conditions defining R are x1 + x2 + x3 = 0, y1 + y2 + y3 = 0 and
z1 + z2 + z3 = 0.

The root system contains 72 elements. Some of the vectors are of the form
(ξ ; θ; θ), (θ; ξ ; θ) and (θ; θ; ξ), where θ = (0, 0, 0), and ξ = (1, 1̄, 0), (1, 0, 1̄) or
(0, 1, 1̄), 1̄ ≡ −1. This yields nine elements. The other part of elements is given by the
triples (ξ ; η; ζ ), where ξ , η, ζ vary over {(1/3)(2, 1̄, 1̄), (1/3)(1̄, 2, 1̄), (1/3)(1̄, 1̄, 2)}. This
yields 27 elements; in total we obtain 36 elements. The remaining 36 elements of the root
system are just the inverses of the described ones.

The 72 roots define 36 projective lines (rays). Denote this set by A. The configuration is
quite symmetric: each line is orthogonal to precisely 15 other lines. Note that each line can be
represented by an integer (9-dimensional) vector with the entries being 0,±1 or ±2. Denote
by nm the number of subsets U ⊂ A consisting of m pairwise orthogonal lines. A computation
in analogy with the E7 case yields n2 = 270, n3 = 540, n4 = 135, n5 = 0, n6 = 0. There
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are no tuples of cardinality 5 and 6, but for smaller tuples one can check that each pair of
orthogonal lines extends to a triple, and each triple extends to a 4-tuple (of pairwise orthogonal
lines). In this sense the configuration ‘tries to be saturated’.

We need more lines to construct a 6-dimensional saturated configuration. Look at the
4-tuples of pairwise orthogonal lines in A. They can be classified. There are tuples of the
form

Q1 := {[1, 1̄, 0; 0, 0, 0; 0, 0, 0],

[0, 0, 0; 1, 1̄, 0; 0, 0, 0],

[0, 0, 0; 0, 0, 0; 1, 1̄, 0],

[1, 1, 2̄; 1, 1, 2̄; 1, 1, 2̄]},
where the bar denotes negation. Similar tuples are obtained by permutations of coordinates.
There are 27 tuples of this type.

The other type of tuples is represented by

Q2 := {[1, 1̄, 0; 0, 0, 0; 0, 0, 0],

[1, 1, 2̄; 2̄, 1, 1; 2̄, 1, 1],

[1, 1, 2̄; 1, 2̄, 1; 1, 2̄, 1],

[1, 1, 2̄; 1, 1, 2̄; 1, 1, 2̄]}.
Permutations of coordinates yield 54 different tuples of this form.

The third type of tuples is represented by

Q3 := {[2̄, 1, 1; 2̄, 1, 1; 2̄, 1, 1],

[2̄, 1, 1; 1, 2̄, 1; 1, 2̄, 1],

[1, 2̄, 1; 2̄, 1, 1; 1, 2̄, 1],

[1, 2̄, 1; 1, 2̄, 1; 2̄, 1, 1]}.
Permutations yield again 54 different variants. In total we have 54+54+27 = 135 (n4 = 135)

tuples.
Now look at the subspaces (of the 6-dimensional space R mentioned) orthogonal to these

4-tuples. Let ξ, η, ζ be real variables satisfying ξ + η + ζ = 0. A generic element of Q⊥
1 ∩ R

can be written as [ξ(1, 1, 2̄); η(1, 1, 2̄); ζ(1, 1, 2̄)]. A generic element of Q⊥
2 ∩ R is of the

form [0, 0, 0; ξ, η, ζ ;−ξ,−η,−ζ ]. The space Q⊥
3 ∩ R coincides with Q⊥

1 ∩ R.
Invoke the exceptional root system G2. Its roots are naturally modelled on a 2-

dimensional subspace x + y + z = 0 of the space of 3-dimensional vectors (x, y, z). The roots
are (1, 1̄, 0), (1, 0, 1̄), (0, 1, 1̄), (2, 1̄, 1̄), (1̄, 2, 1̄), (1̄, 1̄, 2), and their inverses (i.e. there are
12 roots). The idea is to identify this subspace with the 2-dimensional subspaces defined
by the parameters ξ, η, ζ . In other words, enhance the E6 projective configuration with
the projective lines represented by such vectors, for which (ξ, η, ζ ) is an element of G2

root system. For example, if we take the 4-tuple Q1, we obtain six projective lines of the
form [ξ(1, 1, 2̄); η(1, 1, 2̄); ζ(1, 1, 2̄)], where (ξ, η, ζ ) varies over (1, 1̄, 0), (1, 0, 1̄), (0, 1, 1̄),
(2, 1̄, 1̄), (1̄, 2, 1̄), (1̄, 1̄, 2).

Recall that we have 135 different 4-tuples of pairwise orthogonal projective lines
corresponding to the E6 root system. Construct for each such tuple the six projective lines
(invoking the G2 root system). Take the union of all these lines. This yields 162 lines.
Attaching them to A, we obtain a projective configuration Ã ⊃ A of 198 elements.

It turns out that Ã is saturated! We can generate the m-tuples of pairwise orthogonal
lines of Ã. Let ñm be the number of these tuples. The Maple computation results in
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ñ2 = 4995, ñ3 = 25 920, ñ4 = 32 400, ñ5 = 15 552, ñ6 = 2592. One could hope that Ã

is non-colourable, but the situation is slightly more complicated. It turns out (see below)
that Ã is colourable, but there is only one good bicolouring. This immediately leads to the
idea of how to construct a non-colourable configuration containing E6. Since two red rays
cannot be orthogonal (by the definition of a good bicolouring), one can consider a copy Ã′

of Ã obtained by some rotation. It is possible to adjust this rotation in such a way that at
least one of the red rays in Ã is orthogonal to a red ray in Ã′. Then Ã ∪ Ã′ becomes non-
colourable. Furthermore (see below), one can choose this rotation in such a way that there
exists a saturated finite configuration Â ⊃ Ã ∪ Ã′. By that one arrives at a finite saturated
non-colourable configuration Â containing the E6 configuration.

Let us formulate the final result first and then give some comments. We have
a 9-dimensional space R

9 consisting of vectors (x; y; z), where x = (x1, x2, x3), y =
(y1, y2, y3), z = (z1, z2, z3). The symmetric group S3 naturally acts in four different ways
on these vectors: permuting {xi}i , {yj }j , {zk}k , or permuting {x, y, z}. This gives an action
of the wreath product S3 � S3 on R

9 which fixes R (recall that R is defined by the conditions∑
i xi = ∑

yj = ∑
k zk = 0) on which we realize the E6 root system. There are also three

natural ways to act on R
9 with the group Z/2Z by negating x, y, or z components, respectively.

This yields an action of (Z/2Z)3 on R
9, again fixing R. The constructed actions on R

9 induce
the actions on P(R) (the set of rays in R). For λ ∈ P(R), denote by O(λ) its orbit under the
action of S3 � S3, and by Ô(λ) the corresponding orbit under the action of the free product of
S3 � S3 and (Z/2Z)3. Consider the following six rays:

λ1 := [1, 1̄, 0; 0, 0, 0; 0, 0, 0],

λ2 := [2, 1̄, 1̄; 2, 1̄, 1̄; 2, 1̄, 1̄],

λ3 := [1, 1̄, 0; 1, 1̄, 0; 0, 0, 0],

λ4 := [2, 1̄, 1̄; 2̄, 1, 1; 0, 0, 0],

λ5 := [4̄, 2, 2; 2, 1̄, 1̄; 2, 1̄, 1̄],

λ6 := [2, 1̄, 1̄; 0, 0, 0; 0, 0, 0].

In this notation we have the following theorem.

Theorem 2.

(1) The union A := O(λ1) ∪ O(λ2) yields the E6 projective configuration.
(2) The union Ã := ∪5

i=1O(λi) is a saturated projective configuration, Ã ⊃ A, |Ã| = 198.
It admits precisely one good bicolouring. The set of red lines coincides with the orbit
O(λ4).

(3) The union Â := ∪6
i=1Ô(λi) is a saturated non-colourable projective configuration,

Â ⊃ Ã ⊃ A, |Â| = 558.

Let us describe the strategy of the implementation of the proof of this theorem on a
computer. The facts that Ã and Â are saturated can be verified in a straightforward way in
Maple. The non-trivial part of the proof is to check that Ã admits just one good bicolouring.

The set Ã consists of two disjoint parts: Ã = A ∪ Aext, where A is the set corresponding
to E6 roots. The first step will be to describe some (not all) of the elements of P(6)

⊥ (Ã). These
elements will be of the shape T ∪ B, where T ∈ P(4)

⊥ (A) and B ∈ P(2)
⊥ (Aext). More precisely,

we shall describe a collection of T (i)
p ∈ P(4)

⊥ (A) and B(i)
p ∈ P(2)

⊥ (Aext), where p = 1, 2, . . . , 45

and i = 1, 2, 3, such that for each p one may combine any T (l)
p with any B

(j)
p (l, j = 1, 2, 3)

to obtain T (l)
p ∪ B

(j)
p ∈ P(6)

⊥ (Ã).
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Observe that there exist 6-tuples (of pairwise orthogonal lines) consisting just of the lines
from Aext. For example,

P := {[0, 0, 0; 2, 1̄, 1̄; 2̄, 1, 1],

[0, 0, 0; 0, 1, 1̄; 0, 1, 1̄],

[0, 0, 0; 0, 1, 1̄; 0, 1̄, 1],

[4̄, 2, 2; 2, 1̄, 1̄; 2, 1̄, 1̄],

[2, 4̄, 2; 2, 1̄, 1̄; 2, 1̄, 1̄],

[2, 2, 4̄; 2, 1̄, 1̄; 2, 1̄, 1̄]}.
Recall that |Ã| = 198, |A| = 36. Therefore |Aext| = 162. Note that 162 is divisible by

6; this is not an accident. Permuting the components of the six vectors (simultaneously), one
can generate the 6-tuples similar to P. Each such tuple contains a unique element similar to
[0, 0, 0; 2, 1̄, 1̄; 2̄, 1, 1] (i.e. the element in O(λ4)). There are 27 tuples obtained this way. It
is straightforward to check that they are mutually disjoint. Since 27 × 6 = 162, their union is
just the set Aext.

Let us number the mentioned 6-tuples of Aext as P1, P2, . . . , P27. Each of them contains
exactly one point of O(λ4) (represented by the vector with precisely three zero coordinates);
denote it by ai, i = 1, 2, . . . , 27. Now look at the A part of Ã = A∪Aext. Recall that we have
n4 = 135 4-tuples of pairwise orthogonal lines in A; number them in some way and denote
as T1, T2, . . . , T135. For each i = 1, 2, . . . 27, and each b ∈ Pi\{ai}, find all m, 1 � m � 135,
such that the elements of Tm are orthogonal to ai and b. It turns out that every time there
are precisely three such 4-tuples. If m1 < m2 < m3 are the three numbers of the tuples
corresponding to i and b, denote 	i,b := (m1,m2,m3).

Now consider the set D := {	i,b| i = 1, 2, . . . 27; b ∈ Pi\{ai}}. Its cardinality will be
45. For each 	 ∈ D compute all pairs of the form (i, b), 1 � i � 27, b ∈ Pi\{ai}, such that
	i,b = 	. It turns out that every time there are precisely three such pairs (i, b), (i ′, b′), (i ′′, b′′)
(let i < i ′ < i ′′); denote G	 := ((i, b), (i ′, b′), (i ′′, b′′)).

Number the elements of D: 	(1), 	(2), . . . , 	(45). For each p = 1, 2, . . . 45, let
(m

(p)

1 ,m
(p)

2 ,m
(p)

3 ) = 	(p); hence for each p = 1, 2, . . . , 45, we have three 4-tuples
T

m
(p)

1
, T

m
(p)

2
, T

m
(p)

3
consisting of elements of A. From the corresponding G	(p) , one obtains

the three pairs (ai, b), (ai ′ , b
′), (ai ′′ , b

′′) of elements of Aext. Redenote them (up, vp),
(up

′, vp
′), (up

′′, vp
′′), respectively. For each p = 1, 2, . . . , 45, we have the following data:

σp := (
m

(p)

1 ,m
(p)

2 ,m
(p)

3 ; (up, vp), (u′
p, v′

p), (u′′
p, v′′

p)
)
.

Hence, the 27 × 5 = 135 distinct pairs of the form (i, b), i = 1, . . . 27, b ∈ Pi\{ai} are split
into 45 triples {(up, vp), (u′

p, v′
p), (u′′

p, v′′
p)}, as well as the collection of 135 distinct 4-tuples

Tm is split into 45 triples
{
T

m
(p)

1
, T

m
(p)

2
, T

m
(p)

3

}
. One may say that each T-triple is attached to a

(u, v)-triple in σp:
{
T

m
(p)

1
, T

m
(p)

2
, T

m
(p)

3

}
� {(up, vp), (u′

p, v′
p), (u′′

p, v′′
p)}.

For every p = 1, 2, . . . , 45, combining a 4-tuple T with any pair (u, v), one obtains a tuple of
six pairwise orthogonal lines in A. For example, T

m
(p)

3
∪{u′

p, v′
p} is a collection of six mutually

orthogonal lines. As already mentioned, there exist other 6-tuples of pairwise orthogonal
elements in Ã, but it will suffice to consider just the described ones in order to establish the
fact that there exists precisely one good bicolouring of the set Ã.

Now let us make the next step. For each p = 1, 2, . . . , 45, using the notation from the
definition of σp, look at sp := {up, u′

p, u′′
p}. Recall that up, u′

p, u′′
p are the projective lines of the
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form ai, 1 � i � 27. It turns out that it is possible to partition the set {a1, a2, . . . , a27} using
the sets {sp}p (note that 27 = 3×9), i.e. there exists (p1, p2, . . . , p9) such that sp1 , sp2 , . . . , sp9

are pairwise disjoint. As a remark, the Maple computation shows that each sp is disjoint with
precisely 12 other sets of this form. Fix a concrete partition P = (p1, p2, . . . , p9) defined by

sp1 = {[θ; ξ1;−ξ2], [θ; ξ2;−ξ3], [θ; ξ3;−ξ1]},
sp2 = {[θ; ξ1;−ξ1], [θ; ξ2;−ξ2], [θ; ξ3;−ξ3]},
sp3 = {[−ξ1; θ; ξ1], [−ξ2; θ; ξ2], [−ξ3; θ; ξ3]},
sp4 = {[−ξ2; θ; ξ1], [−ξ3; θ; ξ2], [−ξ1; θ; ξ3]},
sp5 = {[ξ1;−ξ2; θ ], [ξ2;−ξ3; θ ], [ξ3;−ξ1; θ ]},
sp6 = {[ξ1;−ξ1; θ ], [ξ2;−ξ2; θ ], [ξ3;−ξ3; θ ]},
sp7 = {[θ; ξ1;−ξ3], [−ξ2; θ; ξ3], [ξ2;−ξ1; θ ]},
sp8 = {[θ; ξ3;−ξ2], [−ξ1; θ; ξ2], [ξ1;−ξ3; θ ]},
sp9 = {[θ; ξ2;−ξ1], [−ξ3; θ; ξ1], [ξ3;−ξ2; θ ]}.

where θ is as above and ξ1 = (2̄, 1, 1), ξ2 = (1, 2̄, 1), ξ3 = (1, 1, 2̄).
We have a collection of triples (upi

, u′
pi

, u′′
pi

), i = 1, 2, . . . , 9. For each triple we have
(vpi

, v′
pi

, v′′
pi

) (see the notation in the definition of σp); vpi
⊥ upi

; v′
pi

⊥ u′
pi

; v′′
pi

⊥ u′′
pi

.

One may also consider 	(pi) = (
m

(pi)

1 ,m
(pi)

2 ,m
(pi)

3

)
. Recall that each m

(pi)

j (j = 1, 2, 3)

defines a 4-tuple of pairwise orthogonal projective lines in A. Redenote it (this 4-element
set) by Ti,j . A (straightforward) Maple computation shows that it is possible to define
α : {1, 2, . . . , 9} → {1, 2, 3} in such a way that the sets {Ti,α(i)}9

i=1 are pairwise disjoint.
In fact, there will be just six such functions α; denote them as α1, α2, . . . , α6. For each
k = 1, 2, . . . , 6, we have nine 4-tuples

{
Ti,αk(i)

}9
i=1, and each ith tuple can be extended in

three different ways up to a 6-tuple (of pairwise orthogonal elements) by way of adjoining{
upi

, vpi

}
,
{
u′

pi
, v′

pi

}
or

{
u′′

pi
, v′′

pi

}
, respectively.

The third step is to try to implement a good bicolouring. For each i = 1, 2, . . . , 9
and k = 1, 2, . . . , 6 we have three elements of P(6)

⊥ (Ã) looking as follows: Ti,αk(i) ∪{
upi

, vpi

}
, Ti,αk(i) ∪ {

u′
pi

, v′
pi

}
and Ti,αk(i) ∪ {

u′′
pi

, v′′
pi

}
. Select any i and k. If one assigns

1 (the red colour) to an element of Ti,αk(i), this implies that all the corresponding u and v lines,
as well as the rest of the lines in Ti,αk(i), acquire the assignment 0 (the blue colour). On the other
hand, if 1 (the red colour) is assigned to u or v element, say to upi

, then vpi
becomes blue (is

assigned with 0), as well as the four elements of the 4-tuple. The latter implies that one of the
elements in

{
u′

pi
, v′

pi

}
and one of the elements in

{
u′′

pi
, v′′

pi

}
should be red (i.e. have the label 1).

In total, one obtains 12 (i.e. 4 + 23) possible choices of colours for the ten elements of

ci,k := Ti,αk(i) ∪ {
upi

, vpi
, u′

pi
, v′

pi
, u′′

pi
, v′′

pi

}
.

A bicolouring � : Ã → {0, 1} restricted to ci,k is a map �(i,k) : ci,k → {0, 1}. We have 12
candidates for �(i,k) in case � is good; denote them �

(i,k)
1 , �

(i,k)
2 , . . . , �

(i,k)
12 . The corresponding

sets of red lines R
(i,k)
l := {

x ∈ ci,k

∣∣ �(i,k)
l (x) = 1

}
, l = 1, 2, . . . , 12, are either singletons,

or 3-element sets. Recall that two red lines cannot be orthogonal. For each k = 1, 2, . . . , 6,
put Dk(i1, l1; i2, l2) := 1, if ∀x ∈ R

(i1,k)
l1

∀y ∈ R
(i2,k)
l2

: y �⊥ x; put Dk(i1, l1; i2, l2) := 0, –
otherwise (i1, i2 = 1, 2, . . . 9; l1, l2 = 1, 2, . . . 12).

A Maple computation shows that for each pair (i1, i2), i1 < i2, there are 42 pairs
(l1, l2) such that Dk(i1, l1; i2, l2) = 1. Consider the set Lk consisting of all tuples
(l1, l2, . . . , l9) (where each lm (m = 1, 2, . . . , 9) is in the range 1, 2, . . . , 12), such that
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∀m, n = 1, 2, . . . 9 : Dk (m, lm; n, ln) = 1. It turns out (Maple computation) that this set has
just five elements, i.e. for each k = 1, 2, . . . , 6, there are just five ways to colour the elements
of Ck := ∪9

i=1ci,k . Each l∗ ≡ (l1, l2, . . . , l9) ∈ Lk defines a collection of projective lines—a
subset Rk(l∗) of Ck = ∪9

i=1ci,k consisting of elements assigned with 1 (red). The rest are
assigned with 0 (blue).

Let us fix at this point our achievements. We have constructed six subsets Ck of Ã (k varies
over 1, 2, . . . , 6). If � : Ã → {0, 1} is good, then we can tell something about the restriction
of � to Ck: we have a limited number of options for �|Ck

indexed by l∗ ∈ Lk, |Lk| = 5.
Recall that the set of red rays in Ck corresponding to l∗ ∈ Lk is denoted by

Rk(l∗), k = 1, 2, . . . , 6. For each k, consider the 9-element set α̃k := {αk(i)}9
i=1. It turns

out (Maple computation) that one can find triples (q1, q2, q3) (let q1 < q2 < q3) such
that the corresponding α̃q1 , α̃q2 , α̃q3 are pairwise disjoint, i.e. their union has cardinality 27.
Furthermore, there will be just two such triples (q1, q2, q3). In principle, one could now proceed
by analysing the sets of the shape Rq1(l

1
∗) ∪ Rq2(l

2
∗) ∪ Rq3(l

3
∗) where lrqr

∈ Lqr
, r = 1, 2, 3, but

the problem simplifies a little at this stage. One can notice that the sets Ck are invariant with
respect to k ranging over 1, 2, . . . , 6. Furthermore, the set of sets {Rk(l∗)}l∗∈Lk

is the same for
each k; hence one may denote its five elements by R1,R2, . . . ,R5. As a remark, two of them
consist of 27 elements, and the other three have cardinalities 21.

At this point we can say the following: if � : Ã → {0, 1} is a good bicolouring, then the
set of its red rays contains one of Rm,m = 1, 2, . . . , 5.

Now, for each m = 1, 2, . . . , 5, consider Bm consisting of all such lines x ∈ Ã (recall
that we have them 198), for which there exists y ∈ Rm such that y ⊥ x. If Rm is contained
in the set of red rays of �, then all elements of Bm must be blue (by the definition of good
bicolouring). Now look at P(6)

⊥ (Ã). If Bm,m = 1, 2, . . . , 5, contains at least one of these
6-tuples, the corresponding variant with m should be ruled out. It turns out (Maple
computation) that just one of the five variants survives after the verification of this condition.
Denote the set Rm corresponding to this unique m by R̃. From a Maple computation we obtain
that R̃ consist of 27 lines of the shape [0, 0, 0; 2, 1̄, 1̄; 2̄, 1, 1], i.e. those which are represented
by a vector with precisely three zeros. In the notation of the theorem, this is just the orbit
O(λ4). It remains to check that if we colour all rays from R̃ to red, and all other rays in Ã to
blue, then the conditions of the definition of a good bicolouring are satisfied. This yields the
unique good bicolouring of Ã.

Now let us consider the set Â ⊃ Ã from the theorem. As a side effect of the
computations, the numbers n̂k of elements in P(k)

⊥ (Â), k = 2, 3, . . . , 6 are as follows:
n̂2 = 18 423, n̂3 = 104 978, n̂4 = 136 620, n̂5 = 66 744, n̂6 = 11 124. For each l =
[x1, x2, x3; y1, y2, y3; z1, z2, z3] ∈ Ã, construct a ray l1 := [−x1,−x2,−x3; y1, y2, y3;
z1, z2, z3]. Denote the union of all l1 by Ã1. Similarly define the sets Ã2 and Ã3

as the unions of all l2 of the form l2 := [x1, x2, x3;−y1,−y2,−y3; z1, z2, z3], and all
l3 := [x1, x2, x3; y1, y2, y3;−z1,−z2,−z3], respectively.

We have Â ⊃ Ã, Ã1, Ã2, Ã3. Suppose that Â admits a good bicolouring �̂. The red
subset R̃ of Ã is known (the 27 elements of the ortbit O(λ4)). Consider three reflections
P1 : [x; y, z] �→ [−x; y; z], P2 : [x; y, z] �→ [x;−y; z], P3 : [x; y, z] �→ [x; y;−z]. The red
subsets of Ãi (to be denoted as R̃i , i = 1, 2, 3), are obtained by applying these reflections to
R̃. Put R̂ := R̃ ∪ R̃1 ∪ R̃2 ∪ R̃3. The cardinality of R̂ will be 54. The set of red rays of �̂

should contain R̂. The non-colourability of Â is derived now from the following fact (checked
in Maple): there exists a 6-tuple from P(6)

⊥ (Â) such that the cardinality of its intersection with
R̂ is not equal to 1, i.e. either we obtain a completely blue 6-tuple of pairwise orthogonal lines
or encounter a situation when several red lines are mutually orthogonal. This contradicts the
assumption that �̂ is good. Therefore Â is non-colourable.
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5. Discussion

It is interesting to mention that the notion of a saturated projective configuration is intimately
related with the notion of an orthoalgebra. An orthoalgebra is a set S equipped with a relation
⊥⊂ S × S, a map · ⊕ · :⊥→ S, (x, y) �→ x ⊕ y, and two distinct elements 0, 1 ∈ S; these
data satisfy (1) if x ⊕ y is defined, then x ⊕ y = y ⊕ x; (2) if (x ⊕ y) ⊕ z is defined, then
(x ⊕y)⊕z = x ⊕ (y ⊕z); (3) x ⊕0 is always defined and x ⊕0 = x; (4) ∀x∃!x∗ : x ⊕x∗ = 1;
(5) if x ⊕ x is defined, then x = 0. A prototypical example of an orthoalgebra is the Hilbert
space orthoalgebra L(H): the set S is the set of all subspaces of the Hilbert space H, and ⊕ is
the orthogonal sum.

If A is a finite saturated projective configuration in H, then it generates a finite
suborthoalgebra of L(H). The examples of such configurations are given above, but there
exist others, for instance, [2, 9]. Note that the corresponding partial Boolean algebra (see
[8]), need not be finite. Orthoalgebras attract attention as the structures capturing the logic
of quantum theory [10, 11]. The relation between ‘quantum logic’ and Kochen–Specker-
type constructions (i.e. non-bicolourable finite configurations) is discussed in [12, 13] and in
[14, 15]. If the finite saturated configuration A is non-bicolourable (i.e. is of Kochen–Specker
type), then this fact is translated into the absence of a morphism from the corresponding
orthoalgebra to a two-element orthoalgebra (absence of bivaluations). A series of examples of
such orthoalgebras has been constructed in [16]; in particular, the orthoalgebra corresponding
to the configuration described in [6] is isomorphic to the E8 orthoalgebra.
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